

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	shrinkwrap 0.10 documentation

shrinkwrap: Python packaging for everything

Shrinkwrap provides tools to create lightweight Python package wrappers around
non-Python software, and to install such software from project-specific
repositories using virtualenv and pip.

A shrinkwrap package is a minimal python package that downloads, compiles and
installs software to the virtualenv base directory. The shrinkwrap package
behaves just like a regular python package, so both shrinkwrap and non-
shrinkwrap packages can be dependencies of each other. We find that this
greatly simplifies deployment of Python packages that depend on compiled
libraries without requiring the use of system-wide packaging tools, like apt
or yum. Shrinkwrap is not an API wrapper generator like SWIG [http://www.swig.org/], but does make it easier to install C libraries into
a virtualenv before installing a separate Python wrapper around its API.

Warning

To avoid cluttering PyPI with non-Python software, please do not ever upload shrinkwrap-generated packages there! Hosting shrinkwrap packages yourself is easy, and described further in Running your own package index.

Shrinkwrap is available on PyPI [http://pypi.python.org/pypi/shrinkwrap/] and can be installed via pip
install shrinkwrap, easy_install shrinkwrap, or by downloading the
package and installing with python setup.py install.

For those interested in the newest features should use the development version
of shrinkwrap, available on bitbucket [https://bitbucket.org/seibert/shrinkwrap]:

hg clone http://bitbucket.org/seibert/shrinkwrap

Note that you cannot directly install shrinkwrap from the Mercurial repository
to a virtualenv with the pip -e command, as this appears to bypass our
post- installation tasks. Running python setup.py install from the cloned
repository is fine, however.

Contents

	How Shrinkwrap Works
	Installing shrinkwrap packages

	Limitations

	Creating Packages
	Writing wrapper packages

	Packaging for a package index

	Running your own package index

	API Documentation
	shrinkwrap.install

	shrinkwrap.command

	Release Notes
	Version 0.10

	Version 0.9

	Roadmap

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Stan Seibert.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.10

 	v0.9

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	shrinkwrap 0.10 documentation

How Shrinkwrap Works

Shrinkwrap was designed to scratch a particular itch: automating the
installation of software in a self-contained environment.

Nearly all package managers assume they are managing software installation for
the entire system, and don’t allow isolated environments. ZeroInstall [http://zero-install.sourceforge.net/] is a notable exception which installs
software into a user’s home directory and can manage multiple versions of a
single package. However, ZeroInstall is more aimed at providing specific
applications to an end user, rather than providing a shell environment with a
set of packages installed and ready for use.

Python’s virtualenv and easy_install/pip tools are a great example of a
userspace packaging solution that creates self-contained, easy-to-use
environments. Since we work in mixed environments where C, C++ and Python
software needs to coexist, shrinkwrap is our attempt to bring all that
software under one roof.

Shrinkwrap achieves this goal by modifying the virtualenv in three ways:

1. It provides an alternate implementation of the python setup.py install
command that makes it easy to insert an arbitrary installer function. This
function typically downloads source tarballs, unpacks them, compiles and
installs to the virtualenv base directory.

2. It adds new optional keyword arguments to setup() to specify the
installer function, and also to list packages that are build dependencies of
this package. See Package Dependencies for details.

3. It creates a new $VIRTUAL_ENV/env.d directory and patches the
$VIRTUAL_ENV/bin/activate script to source any files found in that
directory. This allows shrinkwrap packages to install scripts that make
changes to the shell environment. Many of the software packages we work with
require environment variables to function properly.

With these changes, it becomes very easy to write small Python packages that
download, compile, and install software into the virtualenv environment.

Installing shrinkwrap packages

Installing a shrinkwrapped package is identical to installing any package with
pip. You can install the package file directly from the filesystem:

pip install curl-7.27.0.tar.gz

or from a URL:

pip install http://mtrr.org/packages/curl/curl-7.27.0.tar.gz

or set the URL of extra package repository which contains shrinkwrapped
packages:

export PIP_EXTRA_INDEX_URL=http://mtrr.org/packages/
pip install curl

If the shrinkwrapped package contains the standard test for the shrinkwrap
module at the top (see Built-in installers), then shrinkwrap will be
automatically installed to your virtualenv.

Note that environment files in the $VIRTUAL_ENV/env.d/ directory are only
sourced when the $VIRTUAL_ENV/bin/activate script is sourced. You will
need to source that script again to refresh your environment if the
shrinkwrapped package added new environment files.

As true Python packages, shrinkwrapped packages can be used in a
requirements.txt files passed to pip. Just place the extra index URL
argument at the top:

--extra-index-url http://mtrr.org/packages/
curl
fftw
nose

Disabling system software autodetection

Some shrinkwrap packages will auto-detect whether the software is already
installed system-wide. If it is, installation is skipped and the package is
marked as installed since the dependency is satisfied.

To force installation into the virtual environment, this auto-detection can be
disabled with an environment variable:

	
SHRINKWRAP_NEVER_SKIP

	Set this variable to ‘1’ to forego system package detection and always
install the shrinkwrap package. Unset or change to ‘0’ to restore the
default behavior.

Limitations

We are the first to admit that shrinkwrap is straining the intended purpose of
the Python packaging tools. As a result, shrinkwrap+pip has some
shortcomings compared to more sophisticated package managers:

	Shrinkwrap can only be used with a virtualenv environment. Shrinkwrap tests
for the presence of $VIRTUAL_ENV and will throw an exception if it is not
found.

	Shrinkwrapped packages have only been tested to work with pip as the
installer. We do not support using easy_install, although it might work.

	pip uninstall does not remove files installed by the package because we
do not yet have a way to track changes made by arbitrary installer functions
to the filesystem.

	We do not provide any mechanism to have build options selected at
installation time (such as
variants in MacPorts [http://guide.macports.org/chunked/reference.variants.html] or
USE variables in Gentoo emerge [http://www.gentoo.org/proj/en/devrel/handbook/handbook.xml?part=2&chap=1#doc_chap2_sect5]).
Repositories of shrinkwrapped packages are easy to make with the
shrinkwrap command line tool, so we encourage you to have different
repositories for different kinds of deployment environments. Then you can
tailor the build options of your source packages for each one.

	Shrinkwrap is currently focused on deploying source packages rather than
precompiled packages. There is no reason you can’t unpack a tarball of
compiled code in a shrinkwrap installer() function, but we do not
provide any mechanism for having packages compiled for different
architectures in the same repository. Again, repositories are easy to
make, so we would suggest one per architecture if this is your use case.
(Selecting platform-specific build options in your installer() function,
however, is no problem.)

 Copyright 2012, Stan Seibert.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.10

 	v0.9

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	shrinkwrap 0.10 documentation

Creating Packages

Writing wrapper packages

The goal of shrinkwrap is to create Python packages for non-Python software and install them using Python package management. To this end, shrinkwrap “packages” are simply setuptools setup scripts which know how to download and install other software.

A shrinkwrap package may either use a built-in installer function (for common installation methods) or define a custom one.

Built-in installers

An installer for software using autoconf is available to simplify things. The
autoconf shrinkwrap installer assumes the tarfile unpacks to a directory with the same
name as the tarfile with .tar.{gz,bz2} removed, contains a configure script,
and understands the –prefix option to control where the package is installed.

For example, to package curl, one may write the following (as, e.g. curl-7.27.0.py):

try:
 from shrinkwrap.install import ShrinkwrapInstall
except ImportError:
 import subprocess; subprocess.check_call('pip install -b $VIRTUAL_ENV/build/build-shrinkwrap shrinkwrap', shell=True)
 from shrinkwrap.install import ShrinkwrapInstall
from setuptools import setup

version = '7.27.0'

setup(
 name='curl',
 version=version,
 author='Stan Seibert',
 author_email='stan@mtrr.org',
 shrinkwrap_installer='autoconf',
 shrinkwrap_source_url='http://curl.haxx.se/download/curl-%s.tar.bz2' % version,
 cmdclass={'install': ShrinkwrapInstall},
)

To install curl, one would simply run:

python curl-7.27.0.py install

The boilerplate at the top of the script is required to ensure that shrinkwrap is installed before setuptools is imported. The cmdclass option must be set as shown above in order to use the ShrinkwrapInstall command rather than the default install command provided by setuptools.

The filename of the python script is not used by shrinkwrap.

Custom installers

The following package for bzip2 illustrates a custom installer function:

try:
 from shrinkwrap.install import ShrinkwrapInstall
except ImportError:
 import subprocess; subprocess.check_call('pip install shrinkwrap', shell=True)
 from shrinkwrap.install import ShrinkwrapInstall
import os
from setuptools import setup

version = '1.0.6'
source_url = 'http://www.bzip.org/%(version)s/bzip2-%(version)s.tar.gz' % {'version': version}

def installer(inst):
 self.download_and_unpack_tarball(source_url)

 bzip2_dir = 'bzip2-' + version
 os.chdir(bzip2_dir)
 self.make(extra_opts=['install', 'PREFIX=%s' % self.virtualenv])

setup(
 name='bzip2',
 version=version,
 author='Andy Mastbaum',
 author_email='mastbaum@hep.upenn.edu',
 shrinkwrap_installer=installer,
 cmdclass={'install': ShrinkwrapInstall},
)

As before, installing bzip2 simply requires:

python bzip2-1.0.6.py install

Here, the shrinkwrap_installer argument to setup() is set to our own installer function.
The installer function is called with an instance of ShrinkwrapInstall as the argument, which provides several convenience functions. This installer uses two of these functions, download_and_unpack_tarball and make to download, untar, and compile the bzip2 library. See shrinkwrap.install for a complete list of available functions. By passing extra options to make, the software is installed into the root of the active virtualenv.

Note

For several examples of custom installers, see https://bitbucket.org/seibert/shrinkwrap_pkgs.

Examples include getting code from version control, installing with cmake, and customizing install paths.

Detecting System-provided Packages

In some situations, you only want to install a package if the operating system does not
already provide it. The shrinkwrap_skip argument to setup() allows you to specify
a function to call to check if installation is performed. If the skip function returns
True, then the installer() function is skipped, but the package is marked as installed.

Here is an example of a package that installs curl only if version 7.26.0 or newer is not present:

try:
 from shrinkwrap.install import ShrinkwrapInstall
except ImportError:
 import subprocess; subprocess.check_call('pip install -b $VIRTUAL_ENV/build/build-shrinkwrap shrinkwrap', shell=True)
 from shrinkwrap.install import ShrinkwrapInstall
from setuptools import setup
from distutils.version import LooseVersion

version = '7.27.0'

def skip(inst):
 try:
 output = inst.cmd_output('curl-config --version')
 name, version_str = output.split()
 system_version = LooseVersion(version_str)
 min_version = LooseVersion('7.26.0')
 if system_version > min_version:
 return True # Don't install
 else:
 return False # Version too old
 except:
 return False # install package if anything went wrong

setup(
 name='curl-check',
 version=version,
 author='Stan Seibert',
 author_email='stan@mtrr.org',
 shrinkwrap_installer='autoconf',
 shrinkwrap_skip=skip,
 shrinkwrap_source_url='http://curl.haxx.se/download/curl-%s.tar.bz2' % version,
 cmdclass={'install': ShrinkwrapInstall},
)

Package Dependencies

The handling of package dependencies in pip (as of version 1.1, anyway) does
not, unfortunately, meet the requirements for installing compiled software.
Packages listed in the install_requires keyword argument to setup()
will be discovered by pip and installed, but in an arbitrary order. Packages
listed in the setup_requires keyword argument are not actually installed
to the virtualenv, but rather made available in .egg files in the build
directory, which also is not a solution for compiled code.

As a result, shrinkwrap adds a new keyword argument, shrinkwrap_requires,
to setup(). All dependencies listed here are guaranteed to be fully
installed to the virtualenv before the installer() function is run. A
separate pip process is spawned to install each one, so the dependency string
can include package versions, just as setup_requires and
install_requires allow. The shrinkwrap dependencies can be any kind of
package, so if your library uses SCons [http://www.scons.org/] as the build system, you can list it in the shrinkwrap_requires field:

setup(
 name='foo',
 version=version,
 author='Example Author'
 author_email='author@example.com'
 shrinkwrap_installer=installer,
 shrinkwrap_requires=['scons'],
 cmdclass={'install': ShrinkwrapInstall},
)

Environment Variables

If your package also needs to set some shell environment variables for
operation, they can be placed in the $VIRTUAL_ENV/env.d directory, and
they will be sourced automatically when the $VIRTUAL_ENV/bin/activate
script is sourced. See
the package file for CERN’s ROOT library [https://bitbucket.org/seibert/shrinkwrap_pkgs/src/127a74fa3a17/root.py#cl-31]
for an example of using the install_env() convenience function.

Packaging for a package index

To share shrinkwrap packages via a package index like PyPI (remember: don’t actually upload
shrinkwrap packages to PyPI), you must create distribution tarballs.
Shrinkwrap includes a tool to create these automatically from wrapper
setup.py files:

shrinkwrap createpkg bzip2-1.0.6.py

This will create a tarball in the current directory suitable for uploading. Wildcards are valid for
generating many packages at once.

Note

You can name the python file anything you want (not just setup.py). It will be copied to setup.py in a temp directory and the name of the resulting tarball will be derived from the package metadata you specified.

Running your own package index

As mentioned in the Limitations section, shrinkwrap packages are small and
easy to deploy. It is better to have different package repositories when you
want to build a source package with different options in different situations,
rather than have One Repository To Rule Them All [1] .

If you wish to serve your own package index, use the -p option to place
output tarballs into one properly-formatted directory:

shrinkwrap createpkg -p packages my_shrinkwrap_pkgs/*

Simply serve the packages directory on the web, and pip clients can interact
with it just like PyPI:

client$ export PIP_EXTRA_INDEX_URL=http://your-server.com/packages/
client$ pip install bzip2

Extra package indices can be specified in a requirements.txt file with an option
at the top:

--extra-index-url http://mtrr.org/packages/

	[1]	In order to avoid creating One Repository To Rule Them All, we do not plan to ever offer a repository of “official” shrinkwrap packages. Feel free to copy other people’s package files to your repository, however.

 Copyright 2012, Stan Seibert.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.10

 	v0.9

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	shrinkwrap 0.10 documentation

API Documentation

shrinkwrap.install

utilities for installing shrinkwrapped packages

	
shrinkwrap.install.SYSTEM_INCLUDE_PATHS = ['/usr/include', '/usr/local/include', '/opt/local/include', '/sw/include/']

	Standard system-wide include paths

	
class shrinkwrap.install.ShrinkwrapInstall(dist)

	Base class for a setup.py “install” command that wraps a generic tarball installation.

	
check_header(filename, extra_paths=[])

	Search for a header by filename.

Searches in standard locations defined in
SYSTEM_INCLUDE_PATHS as well as any paths provided in
extra_paths, returning True if the file is found and False
if not.

	
cmd_output(cmd, success_return_code=0)

	Run command in the shell and return its output as a byte string.

If return code from command not equal to success_return_code,
raises subprocess.CalledProcessError.

Based on implementation from: https://gist.github.com/1027906

	
download_and_unpack_tarball(url, to_src_dir=False)

	Convenience method that downloads a tarball from the given URL and
unpacks it. By default, the tarfile and uncompressed contents are placed
in the current directory, but if to_src_dir is True, then both the tarfile
and contents will be in the src/ directory under the virtualenv base.

Returns the full path to the downloaded tar file.

	
download_url(url, saveto=None)

	Downloads a file. If no saveto is specified, the basename of
the URL and the current directory will be used.

Returns the full path to the saved file on disk.

	
env_dir

	Full path to shrinkwrap env directory inside virtualenv

	
install_env(filename, contents)

	Create an environment shell script called filename in the
shrinkwrap env directory and fill it with the string contents.

	
make(parallel=True, extra_opts=None)

	Run make in current directory. If parallel is true,
will run make with the -j option and the number of CPU cores.
extra_opts is a list of additional options to be passed to make.

Remember to escape them for the shell, if needed!

	
ncpu

	Number of CPU cores.

	
python_libdir

	Location of python library.

	
run()

	setuptools install command that install dependencies in
before calling the installer function provided in the shrinkwrap_installer
keyword argument to setup().

Disable installer skip functions by setting
SHRINKWRAP_NEVER_SKIP to 1.

	
shell(cmd, success_return_code=0)

	Runs cmd in a shell. Raises subprocess.CalledProcessError if the
return code from cmd is not equal to success_return_code.

	
src_dir

	Full path to source directory inside virtualenv

	
untar(source, target='.', makedir=False)

	Unpack tar file with filename source to directory target.
If makedir is true, then the target directory will be created first,
including missing parent directories.

Default is to extract to current directory.

	
virtualenv

	Full path to base of virtualenv directory.

	
shrinkwrap.install.assert_callable(dist, attr, value)

	Verify that value is a callable function

	
shrinkwrap.install.assert_string(dist, attr, value)

	Verify that value is a string

	
shrinkwrap.install.autoconf_install(self)

	A convenience function to perform an autoconf-based installation.

Note: requires parameter “shrinkwrap_source_dir” to be set in setup() call.

	
shrinkwrap.install.validate_installer_option(dist, attr, value)

	Verify that value is either an allowed string or a callable function

shrinkwrap.command

shrinkwrap command-line utility

	
shrinkwrap.command.activate()

	Print the contents of scripts in $VIRTUAL_ENV/env.d.

	
shrinkwrap.command.createpkg(argv)

	Take each listed file on the command line, copy to a temporary
directory, rename to setup.py, run “python setup.py sdist”, and copy back
the generated tar file.

Streamlines the creation of shrinkwrap packages which are entirely defined
by a setup.py file.

	
shrinkwrap.command.help()

	Print usage for the shrinkwrap command-line utility.

 Copyright 2012, Stan Seibert.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.10

 	v0.9

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	shrinkwrap 0.10 documentation

Release Notes

Version 0.10

	Added shrinkwrap_skip option for skipping installation of
packages if the system already provides them. See Detecting System-provided Packages for more information.

Version 0.9

	First real release.

 Copyright 2012, Stan Seibert.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.10

 	v0.9

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	shrinkwrap 0.10 documentation

Roadmap

Near future goals:

	Automated testing suite. Due to the nature of shrinkwrap, this will require the testing framework to repeatedly create and destroy entire virtualenvs for each test, which requires some non-trivial infrastructure coding.

	SHA1 hash checking of downloaded tar files.

Far future goals:

	Remove all installed files when pip uninstall is called. This will require detecting and recording all the files added to the virtualenv by the installer() function.

 Copyright 2012, Stan Seibert.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.10

 	v0.9

 Navigation

 	
 index

 	
 modules |

 	shrinkwrap 0.10 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 shrinkwrap	

 	
 	
 shrinkwrap.command	

 	
 	
 shrinkwrap.install	

 Copyright 2012, Stan Seibert.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.10

 	v0.9

 Navigation

 	
 index

 	
 modules |

 	shrinkwrap 0.10 documentation

Index

 A
 | C
 | D
 | E
 | H
 | I
 | M
 | N
 | P
 | R
 | S
 | U
 | V

A

 	

 	activate() (in module shrinkwrap.command)

 	assert_callable() (in module shrinkwrap.install)

 	

 	assert_string() (in module shrinkwrap.install)

 	autoconf_install() (in module shrinkwrap.install)

C

 	

 	check_header() (shrinkwrap.install.ShrinkwrapInstall method)

 	cmd_output() (shrinkwrap.install.ShrinkwrapInstall method)

 	

 	createpkg() (in module shrinkwrap.command)

D

 	

 	download_and_unpack_tarball() (shrinkwrap.install.ShrinkwrapInstall method)

 	

 	download_url() (shrinkwrap.install.ShrinkwrapInstall method)

E

 	

 	env_dir (shrinkwrap.install.ShrinkwrapInstall attribute)

 	

 	
 environment variable

 	

 	SHRINKWRAP_NEVER_SKIP, [1]

H

 	

 	help() (in module shrinkwrap.command)

I

 	

 	install_env() (shrinkwrap.install.ShrinkwrapInstall method)

M

 	

 	make() (shrinkwrap.install.ShrinkwrapInstall method)

N

 	

 	ncpu (shrinkwrap.install.ShrinkwrapInstall attribute)

P

 	

 	python_libdir (shrinkwrap.install.ShrinkwrapInstall attribute)

R

 	

 	run() (shrinkwrap.install.ShrinkwrapInstall method)

S

 	

 	shell() (shrinkwrap.install.ShrinkwrapInstall method)

 	shrinkwrap.command (module)

 	shrinkwrap.install (module)

 	SHRINKWRAP_NEVER_SKIP

 	

 	ShrinkwrapInstall (class in shrinkwrap.install)

 	src_dir (shrinkwrap.install.ShrinkwrapInstall attribute)

 	SYSTEM_INCLUDE_PATHS (in module shrinkwrap.install)

U

 	

 	untar() (shrinkwrap.install.ShrinkwrapInstall method)

V

 	

 	validate_installer_option() (in module shrinkwrap.install)

 	

 	virtualenv (shrinkwrap.install.ShrinkwrapInstall attribute)

 Copyright 2012, Stan Seibert.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.10

 	v0.9

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		shrinkwrap 0.10 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Stan Seibert.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 		latest

 		v0.10

 		v0.9

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

